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BACKGROUND: Quantitative and qualitative structure–activity relationships (QSARs) have been used to understand chemical behavior for almost a
century. The main source of QSAR models is the scientific literature, but the open question is how well these models are documented.
OBJECTIVES: The main aim of this study was to critically analyze the publication practices of QSARs with regard to transparency, potential reproduci-
bility, and independent verification. The focus was on the level of technical completeness of the published QSARs.
METHODS: A total of 1,533 QSAR articles reporting 79 individual endpoints, mostly in environmental and health science, were reviewed. The QSAR
parameters required for technical completeness were grouped into five categories: chemical structures, experimental endpoint values, descriptor val-
ues, mathematical representation of the model, and predicted endpoint values. The data were summarized and discussed using Circos plots.
RESULTS: Altogether, 42.5% of the reviewed articles were found to be potentially reproducible. The potential reproducibility for different endpoint
groups varied; the respective rates were 39% for physical and chemical properties, 52% for ecotoxicity, 56% for environmental fate, 30% for human
health, and 32% for toxicokinetics. The reproducibility of QSARs is discussed and placed in the context of the reproducibility of the experimental
methods. Included are 65 references to open QSAR datasets as examples of models restored from scientific articles.
DISCUSSION: Strikingly poor documentation of QSARs was observed, which reduces the transparency, availability, and consequently, the application
of research results in scientific, industrial, and regulatory areas. A list of the components needed to ensure the best practices for QSAR reporting is
provided, allowing long-term use and preservation of the models. This list also allows an assessment of the reproducibility of models by interested
parties such as journal editors, reviewers, regulators, evaluators, and potential users. https://doi.org/10.1289/EHP3264

Introduction
Quantitative and qualitative structure–activity relationships,
QSARs, is a modeling approach that has been an essential way
of thinking and toolbox for more than a century. QSARs have
been used in many areas of natural science to gather informa-
tion and create new knowledge by linking molecular or material
structures to chemistry-driven phenomena. QSAR has its mech-
anistic roots in physical organic chemistry and has provided a
wealth of knowledge on chemical reactivity (Hansch et al.
1991). Equally prominent are landmarks in the fields of medici-
nal chemistry (Hansch et al. 1996, 2002; Cherkasov et al.
2014), drug design (Seddon et al. 2012), and predictive and
computational toxicology (Dearden 2016, 2017); these land-
marks have facilitated the design of novel bioactive compounds
(see Berhanu et al. 2012; Boyd and March 2006 for an exten-
sive list of examples) and have been used to estimate the envi-
ronmental safety of existing and new chemical entities (Price
and Watkins 2003; Katritzky et al. 2010). The vitality of QSAR
is also evident from its success in predictive modeling of tech-
nologically relevant properties (Katritzky et al. 2000) and in ex-
ploratory applications, such as materials (Le et al. 2012; Käärik
et al. 2018), ionic liquids (Das and Roy 2013), and chemical
mixtures (Muratov et al. 2012). QSAR has been found to
be invaluable in various decision-support scenarios in the

pharmaceutical industry (Cumming et al. 2013), in regulatory
use (Cronin et al. 2003b; Cronin et al. 2003a; Benfenati et al.
2007; Kruhlak et al. 2007; Gallegos Salinger et al. 2007;
Tsakovska et al. 2007; OECD 2007), and, recently, in the sys-
tematic analysis of adverse outcome pathways of chemicals
(Patlewicz and Fitzpatrick 2016). QSAR continuously faces
new challenges. For example, in the past decade, researchers
have implemented QSAR methodological solutions to describe
and predict the properties of nanostructures and nanomaterials,
as well as to explain the processes behind these properties
(Winkler et al. 2014). However, progress in this area has been
limited by the quality of the data available for modeling, and the
field has largely remained in the phase of searching for methodo-
logical solutions, mainly how to quantify structure for modeling
(Burello and Worth 2011; Tantra et al. 2015). The many roles of
QSAR as a scientific methodology have made it a unique approach
for gaining new knowledge (Fujita and Winkler 2016).

Classical QSARs were traditionally developed in the form of
multilinear regression (MLR). The evolution of machine learning
methods and their application to explain chemical phenomena
allowed QSARs to expand beyond their original frames. In fact,
the mathematical representation of QSAR models today is often
more diverse and complex. Algorithms such as k-nearest neigh-
bors (k-NN), linear discriminant analysis (LDA), decision trees
(DT), random forests (RF), artificial neural networks (ANN),
support vector machines (SVM), naïve Bayes models, ensemble
models, and others are being used more frequently. These devel-
opments and the expanding experience in building QSAR models
have prompted various discussions in the literature about the best
practices for QSAR model development (Gedeck et al. 2010;
Scior et al. 2009; Tropsha 2010; Martin et al. 2012). The growing
use of QSARs in decision-support systems has led to studies and
discussions on the validation of models, their applicability, and
the uncertainty of their predictions (Eriksson et al. 2003; Tropsha
et al. 2003; Netzeva et al. 2005; Tetko et al. 2006; Gramatica
2007; Chirico and Gramatica 2011; Alexander et al. 2015;
Golbraikh and Tropsha 2002). In recent years, the increasing
amount of chemical data from the wave of big data in chemistry
(Tetko et al. 2016) introduced the importance of data curation in
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QSAR modeling (Fourches et al. 2010; Clark and Waldman
2012; Ruusmann and Maran 2013; Fourches et al. 2016). QSAR,
like any good scientific method, faces challenges (Combes 2001).
The scientific literature has reported debates about and analyses of
the selection of proper model(s) (Johnson 2007), the validation of
models (Huang and Fan 2011), and the predictivity or reliability
of models (Benigni and Bossa 2008a, 2008b), and has provided
examples of developer errors (Dearden et al. 2009). Sometimes,
insufficient information about a model can lead to unrealistically
high expectations or to improper use of the model (Stouch et al.
2003). Despite these challenges, if used in a proper manner,
QSAR functions as an important and very often primary tool in
studies of chemical phenomena, especially when fine-tuning and
understanding of chemical behavior are needed (Doweyk 2008).

QSARs are typically made available in scientific articles; some
models have found their way into commercial software (Nicolotti
et al. 2014) or, in fewer cases, into public solutions and, more
recently, onto the web without paywalls (Tetko et al. 2017).
Following the last-century milestone achieved in 1964 by Hansch
and Fujita (1964) and the progress that has been made in computa-
tional tools and software applications during the past few decades,
QSARmethods have been extensively used. According to theWeb
of Science Core Collection (WOS), from the year 2007 onwards,
over 1,000 articles per year that refer to the terms “QSAR” or
“QSPR (quantitative structure—property relationship)” (Figure 1)
have been published in the peer-reviewed literature. The Scopus
literature database (SCOPUS) reached over 1,000 “QSAR” or
“QSPR” articles in the year 2008 (Figure 1). The actual number of
articles with QSAR models is rather difficult to estimate from this
search because some articles refer to already existing and pub-
lished models, and not all articles that contain QSARs appear in a
straightforward way in search results. Nevertheless, the number of
QSAR articles is steadily increasing due to the wider availability of
experimental data on chemicals and the growth of statistical and
machine learning methods. The scientific literature is unarguably
the main source of QSAR models, and this brings us to the subject
matter of this review—howwell publishedmodels are documented
to allow their reproduction and extended practical use.

The reproducibility of QSAR models is a main concern for
their acceptance in regulatory use; this has been stressed by several
authors (Dearden et al. 2009; Hartung et al. 2004). Moreover, the
reproducibility of research is a fundamental assumption in science;
it allows independent verification of scientific results and enables
the creation of new studies based on existing research. The
International Union of Pure and Applied Chemistry (IUPAC)
defines reproducibility as: “The closeness of agreement between
independent results obtained with the same method on identical
test material but under different conditions (different operators, dif-
ferent apparatus, different laboratories and/or after different inter-
vals of time). The measure of reproducibility is the standard
deviation . . . and a complete statement of reproducibility requires
specification of the experimental conditions which differ” (Currie
and Svehla 1994). This approach is commonly used to evaluate the
reproducibility of experimental studies, and in principle, it is also
applicable to evaluating the reproducibility of QSARs. However,
this is a complex undertaking and involves QSAR-related research
at multiple levels wherein the main criteria to be considered are
the reproducibility of the predicted data, the reproducibility of the
descriptor data, and the reproducibility of the models.

The IUPAC definition of reproducibility implies some changes
in conditions that, ideally, are the presence of different operators
in the same or different laboratories over various time intervals.
When transferring this definition from experimental methods to
QSAR models, it can be concluded that the model is reproducible
and truly useful when it can be used independently of the model’s
authors. It also means that the prediction results are not expected
to be identical and that all existing knowledge accounting for the
uncertainty of experiments can be applied to QSARs as well. To
minimize the uncertainty of model predictions, transparent report-
ing of QSARs is of critical importance. For this reason, published
data on the models should feature technical completeness in
reporting so that the most important steps in the model-building
process can be independently tested and verified against the
reported reference data.

The scientific literature very rarely addresses the issue of the
reproduction and reuse of QSAR models that have been pub-
lished in articles. Dearden et al. (2009) analyzed published mod-
els and identified 21 types of errors to be avoided in deriving and
presenting published QSAR models. Several of these errors are
directly related to the reproducibility of the models, yet no indica-
tion is given of how extensive these problems can be. The authors
also give numerous recommendations on how to avoid these
errors. A relevant study was conducted to verify the reproducibility
of the rate constants of hydroxyl radical reaction models by
rebuilding them using the same dataset and methodology but with
different sets of descriptors (Roy et al. 2011). Recent attempts by
the present authors (Ruusmann et al. 2014) to reengineer published
QSAR models led to the hypothesis that most results beyond the
simplest MLR models are not recoverable and hence are unusable
for practical applications. To the best of our knowledge, there are
no reported systematic reviews of the documentation, independent
verification, and reproducibility of QSAR models presented in the
scientific literature. To fill this gap, a review and analysis of scien-
tific articles is needed to assess the completeness of the technical
reporting and documentation of QSAR parameters and the repre-
sentation of the model.

The main aim of this paper is to critically analyze QSAR
model publication practices in the scientific literature from the
point of view of transparency, potential reproducibility, and inde-
pendent verification by focusing on the degree of published tech-
nical completeness of QSARs. The following section describes a
straightforward framework for assessing such data completeness.
We then applied this framework to the analysis of a wide variety
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Figure 1. Number of quantitative and qualitative structure–activity relation-
ships (QSAR) and QSPR articles in the peer-reviewed literature during the
years 1974–2015 according to the Web of Science Core Collection and
Scopus literature databases (search performed on April 3, 2016).
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of QSAR models that had been developed for various physical
and chemical properties, ecotoxicity, environmental fate, human
health, and toxicokinetic endpoints. The findings for all of these
endpoint groups are summarized and visualized. Based on the
analysis, a set of best practices for improving QSAR model
reporting and hence the reproducibility of published models is
proposed.

Methods
First, one needs to clarify the terminology. Therefore, within
this analysis, a QSAR is considered potentially reproducible
when it is transparently published so that the model can be
reconstructed and, consequently, independently applied to the
recalculation of the QSAR predictions for the chemicals in a
dataset with the same or similar accuracy as that in the original
paper. Transparency means that the dataset, the computational
method description, the model representation, the calculated
descriptor values, and the predicted results are explicitly pro-
vided with the model. Transparency is important because the
availability of data is a prerequisite for the independent assess-
ment of models. However, focusing solely on the transparency
of the model’s presentation is not sufficient to fully assess
whether or not the model is truly reproducible. This study does
not attempt a complete independent assessment of the models.
Given the volume of literature analyzed, the models were not
recalculated; therefore, the reproducibility of the models cannot
be fully confirmed. It is therefore correct to say that the model
is potentially reproducible. This is a good compromise because
testing all the models and data would require too much time and
effort. Despite this, during the given work, we independently
evaluated a significant number of articles of interest and recal-
culated their QSAR models (see discussion and examples in
Tables 1–5 below), which provided sufficient experience as a
basis for the current assessment of the potential reproducibility
of published QSARs.

Framework of the Literature Analysis
Among the many online scientific citation indexing services, the
subscription-based Web of Science (“All Databases” search over
title, abstract, and keywords) was used. The physical and chemical
properties, ecotoxicity, environmental fate, human health, and tox-
icokinetic endpoints listed in the European Commission Joint
Research Centre QSAR model database documentation (JRC
QSAR Model Database 2017) were analyzed and are presented in
the following chapters. Many of these endpoints are required
within the Registration, Evaluation, Authorisation and Restriction
of Chemicals (REACH) European Union regulation (EPCEU
2006). For the literature search, endpoint-specific terms were
assigned in a systematic fashion and combined with the term
“QS*R” (Table S1). The search timespan covered all years up to
December 31, 2015. The search results were manually checked to
find articles that corresponded to the endpoint of concern and con-
tained original QSARmodels (Table S2).

To determine how many articles presenting QSARs contained
enough information to verify and potentially reproduce the model
(s), the following information was collected in tabular form: a)
presence of the complete mathematical representation and statis-
tical parameters of the model(s), b) presence of chemical struc-
tures, c) presence of experimental endpoint values, d) presence of
descriptor values, and e) presence of predicted endpoint values.
When the article contained the information listed in points a
through d above, it was considered potentially reproducible. The
predicted endpoint values (point e) could be missing if all the
other items were provided because they can be calculated from

the given data and used to reproduce the published statistical pa-
rameters, whereas their presence gives an extra level of reliability
for independent evaluation.

Points a to e are connected to each other and constitute a com-
prehensive system. For a reproducible model, it is necessary to
have the complete mathematical representation of the model. The
presence of chemical structures, which should be presented in the
same format as that used for the modeling, is vital for checking
that the representation of chemical names and identifiers is correct.
The presence of experimental endpoint values, descriptor values,
and predicted endpoint values is needed to confirm the validity of
the model. The number of articles with complete information on
data and models was weighed against the total number of articles
with models via calculating percentages for each endpoint and its
endpoint group. In addition to the technical completeness of the
reviewed QSAR articles, the following details were examined: a)
the number of articles using more than one mathematical represen-
tation for modeling (multiple methods for building models), b) the
annual distribution of the articles containing models, c) the sizes
of the datasets used for modeling, and d) the prevalence of model-
ing techniques, wherein all model types were studied.

This framework allowed us to classify the analyzed articles
into three groups: not reproducible, potentially reproducible, and
a mixture of the two cases. The first group included articles that
failed one or more of the above checks. The second group
included articles that passed all the checks. The third group
included articles containing multiple QSAR models, in which
some of the models passed all the checks while others did not.

Visualization Methods
The data collected from the QSAR articles were analyzed, visual-
ized, and discussed with the help of Circos software (version 0.69,
by Canada’s Michael Smith Genome Sciences Centre, http://
circos.ca/software/; Krzywinski et al. 2009), which allows organi-
zation and exploration of large and complex datasets and informa-
tion. Circos plots map data into a circular layout wherein
relationships between data elements are highlighted with links, and
the link thickness indicates the magnitude of the relationship. The
right side of the plot area (see Figure 2 for a legend) is dedicated to
highlighting the relationships between the potential reproducibility
of articles and the types of modeling algorithms over all years. In all
plots (on the right-hand side), the color for YES corresponds to
potentially reproducible articles with models, the color for NO cor-
responds to nonreproducible articles with models, and the color for
MIX corresponds to a mixture of both cases. The left side of the
plot area is divided into four segments and presents the publishing
trends over the past 3 decades. It shows the annual publishing rate
of QSAR articles, the technical completeness of the articles, and the
distribution of dataset sizes as normalized stacked bar plots. The
color coding for technical completeness is the same as that used in
the right side of the plot. The color coding for dataset size and total
number of such datasets is presented as a legend in the middle of
each plot.

Results

Physical and Chemical Properties
Among the five analyzed endpoint groups, physical and chemical
properties were the most widely modeled. This group reported 26
different properties (JRC QSAR Model Database 2017, Table 1),
18 of which were identified in articles containing QSAR models
based on a search using a given set of keywords (see Table S1);
in total, there were 777 such articles, and they represented >50%
of all the articles analyzed. The top five most modeled properties

Environmental Health Perspectives 126001-3 126(12) December 2018

http://circos.ca/software/
http://circos.ca/software/


were boiling point (145), water solubility (131), octanol–water
partition coefficient (110), melting point (67), and vapor pressure
(65); together, these properties were reported in two-thirds of the
articles within the given properties group (see Table 1 for the
contributions made by other properties). Other properties were
represented in <5% of the identified articles. Preliminary searches
for the adsorption/desorption (1.11) property showed results that
corresponded with the respective endpoints (2.7 and 2.8) in the
environmental fate category (see section “Environmental Fate
Endpoints”). Therefore, property 1.11 was not analyzed further
because the terms “adsorption” and “desorption” were too general
to be used as a search query. Similarly, we did not identify articles
reporting complex formation ability in water (1.12), particle size
distribution (1.14), fat solubility (1.18), oxidizing properties
(1.23), average molecular weight of polymers (1.24), solution/
extraction behavior of polymers in water (1.25), and length-
weighted geometric mean diameter of fibers (1.26), and therefore
did not analyze these endpoints further.

A total of 777 articles were evaluated (see the outer curved
strip of the synoptic view in the upper right sector of Figure 3). Of
the evaluated articles, 37% (287) qualified as potentially reproduci-
ble, i.e., they included enough information that the model could be
reused. For an additional 2% (19) of the articles, only the MLR
models were reproducible; these were considered partially repro-
ducible. The potential reproducibility of articles within individual
properties varied greatly from 21 to 88%. Only three properties
had potentially reproducible models in >50% of the published
articles (Table 1): for hydrolysis, 88%; for octanol–air partition

coefficient, 59%; and for octanol–water partition coefficient,
almost 52%. Thus, >60% of the articles (471) in the property
group did not include enough information to be considered poten-
tially reproducible.

Most of the articles concerning physical and chemical proper-
ties utilized only one modeling algorithm. Exceptions are 92
articles where more than one algorithm was used. MLR models
were predominant and were used 653 times (see the outer curved
strip in the lower right sector of Figure 3). Among the identified
articles that focused on physical and chemical properties as an
endpoint, ANNs were used for the first time in 1996 and appeared
139 times within the given timeline. The third most used model-
ing algorithm was SVM, which appeared in 36 cases. Other
machine-learning algorithms in QSARs of physical and chemical
properties were used at much lower frequency. For example, in
the remaining 70 cases, k-NN (15) and RF (14) algorithms were
the most popular. The stacked bar plot at the bottom of Figure 3
shows the use of various modeling algorithms on a timescale.
When the number of articles (black line on the stacked bar plot)
was compared with the number of modeling algorithms, it was
evident that in recent years, more than one algorithm per article
was used. In 2003, Dearden (2003) recommended the use of con-
sensus predictions if possible. The number of articles using multi-
ple modeling algorithms has increased since then. In addition, the
popularity of studies comparing the predictive capabilities of dif-
ferent algorithms contributes to the increased frequency of the
publication of articles using multiple modeling algorithms.

The majority of reproducible models were MLRs (see the inte-
rior of the right side of Figure 3, which links modeling algorithms
to their potential reproducibility). ANN, the second most common
modeling algorithm for physical and chemical properties, was used
in 139 models, only 12 of which provided reproducible methods.
This low rate was mainly caused by missing reported weights of
the neural network neurons. Articles using SVM-derived models
shared a similar issue, with only 6 of 36 articles considered poten-
tially reproducible. The use of incompletely reported SVM models
is not possible due to the lack of support vector values. When con-
sidering the remaining modeling techniques, only 8 of 63 articles
were considered potentially reproducible, and the majority of those
used polynomial regression models.

The first 15 years (1984–1999) yielded 85 articles, and the
models were based on small datasets (<100 data points).
Beginning in the year 2000, an average of 43 articles per year
were published. The year 2008 marked the largest number of
articles per year (63). The datasets used in the modeling (see
Table 1 and Figure 3) ranged from very small (5 data points) to
very large (58,400 data points). This yielded an average dataset
size of 611 compounds, but this value was biased by a couple of
very large datasets. The median of 90 compounds reflected the
distribution of the dataset sizes more accurately, and this can
also be seen in the center of the left-hand side of Figure 3. The
distribution of the articles relative to dataset sizes showed that
in ∼ 53% of the articles, the dataset size was 100 or smaller; in
30% of the evaluated articles, it was between 101 and 500; in
5% of the articles, it was between 501 and 1,000; in 9% of the
articles, it was between 1,001 and 5,000; and in 2% of the
articles, it exceeded 5,000 compounds. On an annual basis, in
half of the cases, the datasets included 100 compounds or
fewer, whereas in a third of the cases, the datasets contained up
to 500 compounds, indicating that the QSARs were mostly
derived for congeneric datasets. It may be surprising that even
for physical and chemical properties, for which experimental
data should be easily available, the modeled datasets were
small, which suggested that QSAR has been and still is largely
mechanistically driven.
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Environmental Fate Endpoints

Although articles with QSAR models were found for all envi-
ronmental fate endpoints (JRC QSAR Model Database 2017,
Table 2), the endpoints were unevenly distributed among the
articles. The five most prevalent endpoints accounted for nearly
93% of the 215 reviewed articles; these were bioconcentration
(23%), biodegradation (22%), organic carbon–sorption partition
coefficient (18%), and abiotic degradation in air (15%) and in
water (14%). The results showed where most of the modeling
interest has been directed and where enough data for modeling
are available. Up to five articles were found for each of the
remaining endpoints (Table 2). These scarce endpoints were of-
ten modeled as part of experimental measurements.

More than half of the articles (52%) describing environmental
fate endpoints contained models that were potentially reproducible

(Table 2). In most cases, all models in the article (49%) were trans-
parently presented, while in 3% of the articles, only some of the
models were transparently presented (Figure 4, outer curved strip
in the upper right sector). Again, the mixed results for potential
reproducibility indicate that sufficient information was included for
MLRs but not for other types of models. MLR, the most common
approach for modeling, was used in 183 articles (Figure 4, curved
strip in the lower right sector), of which 109 contained models that
were potentially reproducible. The remaining modeling algorithms
showed much lower potential reproducibility rates (Figure 4, inte-
rior of the right side)—of 22 ANN models, 5 had technically com-
plete documentation, and all 14 SVM models had technically
incomplete documentation. In the 37 cases of other modeling
algorithms, polynomial regression (8), DTs (7), and k-NN (6)
algorithms were more prevalent. Six of these 37 articles were
potentially reproducible, and four of the six used polynomial

Table 1. Summary of the literature search for physical and chemical properties.

Endpoint Articles Dataset size Example(s)

QMRF
ID Name

No. with
models %

No. that are
potentially
reproducible

Ratio
(%) Min Max Median QDB DOI

1.1. Melting point 67 8.62 13 (1) 20.90 11 8,241 82 10.15152/QDB.127
10.15152/QDB.146

1.2. Boiling point 145 18.66 62 (3) 44.83 10 17,768 90 10.15152/QDB.128
10.15152/QDB.122

1.3. Water solubility 131 16.86 43 (3) 35.11 11 42,974 136 10.15152/QDB.148
10.15152/QDB.127
10.15152/QDB.173
10.15152/QDB.146

1.4. Vapor pressure 65 8.37 19 29.23 10 1,771 107 10.15152/QDB.121
10.15152/QDB.127
10.15152/QDB.173
10.15152/QDB.146

1.5. Surface tension 21 2.70 9 (1) 47.62 10 1,604 80 10.15152/QDB.152
10.15152/QDB.122

1.6. Octanol–water partition
coefficient

110 14.16 54 (3) 51.82 8 12,831 58 10.15152/QDB.146

1.7. Octanol–water distribution
coefficient

2 0.26 1 50.00 24 1,130 577 —

1.8. Octanol–air partition coefficient 22 2.83 12 (1) 59.09 7 98 27 10.15152/QDB.146
1.9. Air–water partition coefficient 31 3.99 9 (1) 32.26 7 1,954 96 10.15152/QDB.150

10.15152/QDB.146
1.10. Dissociation constant 22 2.83 7 (1) 36.36 12 58,400 61 10.15152/QDB.147
1.11. Adsorption/desorption 0 — — — — — — —
1.12. Complex formation ability in water 0 — — — — — — —
1.13. Density 34 4.38 8 23.53 5 803 93 10.15152/QDB.122
1.14. Particle size distribution 0 — — — — — — —
1.15. Hydrolysis 17 2.19 15 88.24 12 40 29 10.15152/QDB.149
1.16. Stability 14 1.80 4 (1) 35.71 16 99 40 10.15152/QDB.131
1.17. Viscosity 32 4.12 9 (2) 34.38 9 2,748 222 10.15152/QDB.151
1.18. Fat solubility 0 — — — — — — —
1.19. Flash point 37 4.75 14 (1) 40.54 34 9,399 284 10.15152/QDB.123

10.15152/QDB.130
10.15152/QDB.160

1.20. Flammability 9 1.16 4 44.44 543 1,615 1,038 10.15152/QDB.196
10.15152/QDB.197

1.21. Explosive properties 9 1.16 3 33.33 7 227 50 —
1.22. Autoignition 9 1.16 1 (1) 22.22 46 820 192 10.15152/QDB.130
1.23. Oxidizing properties 0 — — — — — — —
1.24. Average molecular weight of polymers 0 — — — — — — —
1.25. Solution/extraction behavior of

polymers in water
0 — — — — — — —

1.26. Length-weighted geometric mean
diameter of fibers

0 — — — — — — —

Total 777 100.00 287 (19) 39.38 — — — —
Note: Explanation of columns: QMRF ID, quantitative and qualitative structure–activity relationship (QSAR) model reporting format identification number; No. with models, number
of articles on physical and chemical properties containing model(s); %, percent of 777 articles; No. that are potentially reproducible, see explanation in the first paragraph of the
“Methods” section. The number in parenthesis indicates the number of partially reproducible articles. For ratio (%) these numbers are summed; ratio (%), percent of potentially repro-
ducible articles among the articles with models for a specific endpoint; QDB DOI, digital object identifier in the QSAR Database repository (QSARDB Repository; Ruusmann et al.
2015) for the reproduced article(s). Em dash indicates table cells of endpoints where articles with models were not found or information that can not be provided.
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Figure 3. Consolidated view of the analysis results for the physical and chemical (PC) properties. Circle: annual distribution of articles (left-hand side), ranges
of dataset sizes (in the middle), ratios of potential reproducibility, main modeling algorithms, and relationships between them (right-hand side). Bar plot: annual
distribution of articles and modeling methods. Note: ANN, artificial neural networks; k-NN, k-nearest neighbors; MIX, mixture of reproducible and nonrepro-
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regression. Nearly 86% of the articles in this endpoint group
used only one modeling algorithm. The timescale for the mod-
eling algorithms and the number of articles (Figure 4, stacked
bar plot at the bottom) show that the occurrence of multiple
algorithms per article began to increase in 2003 and that it was
highest in 2014, when 26% of articles covered more than one
modeling algorithm.

The annual distribution of articles on environmental fate end-
points covers a 24-y period from 1991 to 2015 (Figure 4, left
side, first curved strip), a much shorter period than the period for
articles on the physical and chemical properties. In the 1990s, 25
articles were published (Figure 4, left side, second curved strip).
Beginning the year 2000, the publishing rate increased to an av-
erage of 12 articles per year. The most active year was 2014,
with 23 articles, of which 12 were technically complete. The
stacked bar plots (Table 2, Figure 4, left side, interior) reveal
that in the years covered by the study, the datasets used in mod-
eling were not large. The smallest dataset contained only four
compounds, and the largest included 1,938 compounds. Of the
modeled datasets, 60% included <100 compounds (Figure 4,
legend in center), 25% of the articles had dataset sizes between
101 and 500, and 12% of the articles had between 501 and
1,000 compounds in the set; only after the year 2010 did the
dataset size exceed the threshold of 1,001 data points (this
occurred in 3% of the studied articles). An average dataset con-
tained 194 compounds, but again, the real situation is better
reflected by the median, which is 53 compounds. Comparison
between the number of reproducible articles with models and
the dataset sizes of these models revealed that 65% of the
articles used datasets that were smaller than median size. Of the
articles with potentially reproducible models, 73% used data-
sets of up to 100 compounds; this increased to 88% when data-
sets with up to 200 compounds were considered. This indicates
that most of the datasets comprised mechanistically similar
chemicals and that the models developed for broader ranges of
chemicals represent more of an exception.

Ecotoxicity Endpoints
The 261 articles with QSARs for ecotoxicity endpoints (JRC
QSAR Model Database 2017, Table 3) were comparable to the
number of articles with QSARs for environmental fate endpoints.

Of the 13 endpoints, the literature search yielded QSAR articles
for 12. QSAR models for toxicity to soil microorganisms (3:7)
were not found when the given keywords (Table S1) were used.
It was apparent that >82% of the QSAR research effort involving
ecotoxicity endpoints has been devoted to the three endpoints of
acute toxicity to fish (40%), algae (22%), and Daphnia (20%).

Nearly 56% of all ecotoxicity endpoint articles were poten-
tially reproducible, yielding the highest reproducibility rate
among the five endpoint groups examined (Table 3). Of the 261
articles, 144 reached technical completeness of data documenta-
tion (Figure 5, outer curved strip in the upper right sector), two in
the group of partially reproducible articles included sufficient in-
formation for MLR models, and 115 lacked sufficient detail to be
classified as technically complete. The high verifiability rate of
the models in this endpoint group was caused by the small size of
the datasets and the simple relationship between toxicity and oc-
tanol–water partition coefficient.

The MLR algorithm (221) also dominated the ecotoxicity
group (Figure 5, outer curved strip in the lower right sector); it
was followed in frequency by ANNs (23) and DT (11). Other
modeling algorithms were used in 39 articles; the most popular
of these were SVM (8), RF (8), LDA (6), and k-NN (6).
Detailed analysis also shows that of the 144 potentially repro-
ducible articles, only three included models that were devel-
oped using methods other than MLR (Figure 5, interior of the
right side). MLR models were nonreproducible mostly due to
missing descriptor values. The timeline of articles and modeling
algorithms (Figure 5, at the bottom, stacked bar plot) revealed
that multiple algorithms per article were not commonly found
for this endpoint group. The most notable exception was the
year 2015, when seven articles included up to five different
modeling approaches. For comparison, it is worth noting that
overall more than one modeling technique was used in 24
articles.

The annual distribution of articles for ecotoxicity endpoints
covered the longest period—34 y, ranging from 1981 to 2015
(Figure 5, left side). The proportions of potentially reproducible
and potentially nonreproducible articles (the first curved strip)
indicate the years in which the reported modeling data were
more complete. Before the year 2000, QSAR models were pre-
sented in 64 articles (the second curved strip). From 2000
onward, the average publishing rate was 12 articles per year.

Table 2. Summary of the literature search for environmental fate endpoints.

Endpoint Articles Dataset size Example(s)

QMRF ID Name
No. with
models %

No. that are potentially
reproducible Ratio (%) Min Max Median QDB DOI

2.1. Abiotic degradation in water 30 13.95 22 73.33 5 1, 431 31 10.15152/QDB.189
2.2. Abiotic degradation in air 33 15.35 17 (2) 57.58 7 1, 543 98 10.15152/QDB.201
2.3. Biodegradation 47 21.86 21 (1) 46.81 7 1, 938 29 —
2.4. Bioconcentration 50 23.26 22 (3) 50.00 10 1, 036 129 10.15152/QDB.115

10.15152/QDB.110
2.5. Bioaccumulation 3 1.40 0 0.00 14 49 20 —
2.6. Organic carbon–sorption partition

coefficient
39 18.14 16 41.03 6 964 66 10.15152/QDB.159

10.15152/QDB.135
2.7. Adsorption/desorption in soil 5 2.33 2 40.00 4 53 12 10.15152/QDB.193
2.8. Adsorption/desorption in sediment 4 1.86 2 50.00 8 66 37 10.15152/QDB.194
2.9. Vegetation–water partition coefficient 2 0.93 2 100.00 5 10 8 10.15152/QDB.192
2.10. Vegetation–air partition coefficient 1 0.46 1 100.00 36 36 36 10.15152/QDB.190
2.11. Vegetation–soil partition coefficient 1 0.46 1 100.00 17 17 17 —

Total 215 100.00 106 (6) 52.09 — — — —
Note: Explanation of columns: QMRF ID, quantitative and qualitative structure–activity relationship (QSAR) model reporting format identification number; No. with models, number
of articles with environmental fate endpoints containing model(s); %, percent of 215 articles; No. that are potentially reproducible, see explanation in the first paragraph of the
“Methods” section. The number in parenthesis indicates the number of partially reproducible articles. For ratio (%) these numbers are summed; ratio (%), percent of potentially repro-
ducible articles among the articles with models for a specific endpoint; QDB DOI, digital object identifier in the QSAR Database repository (QSARDB Repository; Ruusmann et al.
2015) for the reproduced article(s). Em dash indicates table cells of endpoints where articles with models were not found or information that can not be provided.
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The peak number of articles per year (22) occurred in 2006,
and the smallest number of articles (4) was published in 2003.
Most of the datasets used for modeling were small (see stacked
bar plots), and only the last 2 y showed an increase in the num-
ber of compounds in the datasets. The smallest dataset con-
tained only four compounds, whereas the largest one included
1,657 compounds and was the only dataset exceeding 1,000
compounds (Table 3). The average dataset size was 132
compounds, and most datasets included <100 compounds.
Consequently, the median of 42 compounds better reflects the
reality. Figure 5 (left, center of the plot) shows that the dataset
size was between 1 and 100 compounds is in 69% of articles;
21% of the articles included between 101 and 500 compounds,
and 9% of the articles included between 501 and 1,000 com-
pounds. More than 200 compounds were used in 50 articles.
Surprisingly, a dataset as large as 618 for acute toxicity to fish
was already available as early as 1991 (Nendza and Russom
1991), while frequent modeling of larger datasets appeared in
the early 2000s.

Human Health Endpoints
A literature search for QSARs for human health endpoints (JRC
QSAR Model Database 2017, Table 4) identified 142 articles
with models; of these, models were found for 16 of a total of 19
endpoints. By far, the most frequently modeled endpoints were
carcinogenicity and skin sensitization, with 40 and 28 articles,
respectively, containing QSARs; together, these represented
∼ 48% of the articles on human health (Table 4). The executed
keywords (Table S1) did not reveal models for photosensitization
(4.8), photomutagenicity (4.11), or photocarcinogenicity (4.13).

Of the 142 articles that modeled human health endpoints, 40
articles representing 14 endpoints were deemed potentially re-
producible. An additional three articles contained sufficient in-
formation to reproduce only the MLR models. Together, these
articles represented >30% of all articles with models (see
Figure 6, outer curved strip in the upper right sector). The end-
points with the most articles containing sufficient information

for potential reproducibility were carcinogenicity (9), skin sen-
sitization (7), and mutagenicity (6). Carcinogenicity and muta-
genicity endpoints were modeled in the same articles in several
cases due to the close interest in both endpoints.

In this category, 14 articles used more than one modeling
algorithm to derive a model. The timescale at the bottom of
Figure 6 shows that there was no noticeable increase in the use
of multiple algorithms per article through the years studied.
MLRs were presented in 75 articles (Figure 6, outer curved
strip in lower right sector), ANNs were presented in 21 articles,
LDAs were presented in 12 articles, and k-NNs were presented
in 9 articles. Compared to the previous endpoint groups in
which MLR models were presented in ∼ 85% of the articles,
only 52% of the articles this group used MLR models. Notably,
human health endpoints included a proportionally larger section
of algorithms grouped as “OTHER” compared to the previous
endpoints. The most prevalent algorithms in that section were
SVMs (7), DTs (7), and logistic regressions (6). Less than half
of articles with the MLRs were reproducible (Figure 6, interior
of the right side). In addition, there were three LDA models,
two DT models, a polynomic model, and a principal component
analysis model that could be reproduced. No ANN or SVM
model for these endpoints was found to be reproducible
because the weights of the neurons or the support vectors,
respectively, were not reported in the original article.

The annual distribution of articles on the left-hand side of
Figure 6 spans over 24 y, beginning in 1991. An interesting pat-
tern is noted in that until the year 2003, the size of the datasets
were small; this was followed by an increase in the size of the
datasets until 2015, at which point only one dataset included
<100 compounds (Figure 6, stacked bar plot). The difference
between the minimum dataset size (4) and the maximum (19,571,
endpoint 4.2) was large (Table 4), which is reflected by an aver-
age dataset size of 486. Again, the median (69) is a better indi-
cator of the real situation. It is interesting to note that older
models (pre-2003) had smaller datasets, but in general, they
were easier to reproduce, given that more complete information
was presented in those articles. In addition, earlier models

Table 3. Summary of the literature search for ecotoxicity endpoints.

Endpoint Articles Dataset size Example(s)

QMRF ID Name
No. with
models %

No. that are
potentially reproducible Ratio (%) Min Max Median QDB DOI

3.1. Short-term toxicity to Daphnia 53 20.30 31 (1) 60.38 9 353 34 10.15152/QDB.111
3.2. Short-term toxicity to algae 58 22.22 41 (1) 72.41 6 873 29 10.15152/QDB.106

10.15152/QDB.195
10.15152/QDB.182
10.15152/QDB.134
10.15152/QDB.144

3.3. Acute toxicity to fish 104 39.85 43 41.35 6 1,657 90 10.15152/QDB.195
10.15152/QDB.73
10.15152/QDB.108

3.4. Long-term toxicity to Daphnia 3 1.15 2 66.67 5 10 10 —
3.5. Long-term toxicity to fish 1 0.38 1 100.00 29 29 29 10.15152/QDB.145
3.6. Microbial inhibition 9 3.45 5 55.56 8 162 63 10.15152/QDB.200
3.7. Toxicity to soil microorganisms 0 — — — — — — —
3.8. Toxicity to earthworms 2 0.77 2 100.00 7 11 9 —
3.9. Toxicity to plants 12 4.60 10 83.33 13 42 24 —
3.10. Toxicity to soil invertebrates 4 1.53 3 75.00 6 16 8 —
3.11. Toxicity to sediment organisms 5 1.92 3 60.00 4 12 9 —
3.12. Toxicity to birds 4 1.53 1 25.00 110 663 124 10.15152/QDB.198
3.13. Toxicity to honeybees 6 2.30 2 33.33 45 237 105 10.15152/QDB.157

Total 261 100.00 144 (2) 55.94 — — — —
Note: Explanation of columns: QMRF ID, quantitative and qualitative structure–activity relationship (QSAR) model reporting format identification number; No. with model, number
of articles with ecotoxicity endpoints containing model(s); %, percent of 261 articles; No. that are potentially reproducible, see explanation in the first paragraph of the “Methods” sec-
tion. The number in parenthesis indicates the number of partially reproducible articles. For ratio (%) these numbers are summed; ratio (%), percent of potentially reproducible articles
among the articles with models for a specific endpoint; QDB DOI, digital object identifier in the QSAR Database repository (QSARDB Repository; Ruusmann et al. 2015) for the
reproduced article(s). Em dash indicates table cells of endpoints where articles with models were not found or information that can not be provided.
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tended to show clear relationships between the endpoint and a
few descriptors.

Toxicokinetics Endpoints
The toxicokinetics endpoints (JRC QSAR Model Database 2017,
Table 5) had the second lowest number of articles (138) with
models. QSAR models were found for only six out of 10 end-
points. Gastrointestinal absorption (38% of articles) was the most
frequently modeled endpoint in this group, followed by skin pen-
etration (25%), blood–brain barrier penetration (20%), and pro-
tein binding (12%). Together, these endpoints represented 95%
of the articles in this group. Although articles on DNA binding
(5:10) were found, it was difficult to decide which results
belonged to this group. Therefore, extraction of relevant articles
from the search results was not performed for this endpoint.
Unfortunately, for the blood–testis barrier penetration (5:6),
blood–lung barrier penetration (5:7), and metabolism (5:8) end-
points, articles with models were not found using the current set
of keywords (Table S1).

In this category, 38 articles included the information required to
potentially reproduce the model(s), and six articles only included
sufficient information to reproduce theMLRmodels (Figure 7, outer
curved strip in upper right sector). Together, these articles com-
prised nearly 32% of the articles in this group of endpoints. Most
of the articles (19 in Table 5) that provided sufficient information
to reproduce the models were associated with gastrointestinal
absorption (5.3), followed by skin penetration (11), blood–brain
barrier penetration (6), protein binding (5), and, finally, ocular
membrane penetration (3). Unfortunately, due to their technical
incompleteness, neither of the two articles covering placental
barrier penetration (5.5) were considered reproducible.

In 30 (∼ 22%) of the articles in this category, more than one
modeling algorithm was used to derive the models. This trend
started in 2004 (Figure 7, bottom) and has increased in recent

years. The most common modeling algorithm was MLR, with
103 articles (Figure 7, outer curved strip in the lower right sec-
tor). ANNs were used in 21 articles, DTs were used in 12 articles,
and SVMs were used in 11 articles. Other modeling algorithms
[e.g., RFs (8), k-NNs (6), and LDAs (5)] were used 32 times. The
relationships between the modeling algorithms and the potential
reproducibility of the articles (Figure 7, interior on the right side)
again reveal that if the model(s) were potentially reproducible,
they were most often derived using MLR. Proportionally, how-
ever, this category yielded the second lowest potential reproduci-
bility rate among the evaluated endpoint groups. It is worth
mentioning that among DT, LDA, and polynomial regression
models, one could observe technical completeness of data, i.e.,
well-reported models. Unfortunately, full mathematical represen-
tation of ANN and SVM models was not present in any of the
evaluated articles reporting toxicokinetics endpoints.

This group of endpoints (Figure 7, left side) has been studied
with QSARs for the last 20 y. Until 2002, the modeling results
presented in articles were well-documented, and the included
content was sufficient for reproduction. With the gaining of ex-
pertise over the years, one would expect that the quality of model
documentation would improve; unfortunately, this is not the case.
Over the last 16 y, an average of 8 articles per year were pub-
lished (second curved strip). In the most productive year, 2007,
in which 15 articles were published, there was surprisingly low
technical completeness of the reported model data—only one ar-
ticle was potentially reproducible, and two articles comprised
mixtures of potentially reproducible and nonreproducible models.
The largest number of potentially reproducible articles was pub-
lished in 2002; five of the seven articles published in that year
included complete technical data. The datasets used in modeling
varied in size (see Table 5 and Figure 7, stacked bar plots)—the
smallest dataset contained five compounds, and the largest had
20,795 compounds. The average number of compounds in the
datasets was 335. The median number of compounds in the

Table 4. Summary of the literature search for human health endpoints.

Endpoint Articles Dataset size Example(s)

QMRF ID Name
No. with
models %

No. that are
potentially reproducible Ratio (%) Min Max Median QDB DOI

4.1. Acute inhalation toxicity 3 2.11 2 (1) 100.00 28 108 41 10.15152/QDB.129
10.15152/QDB.179

4.2. Acute oral toxicity 7 4.93 3 42.86 27 19,571 60 —
4.3. Acute dermal toxicity 1 0.70 1 100.00 6 6 6 —
4.4. Skin irritation 5 3.52 2 40.00 24 2,108 186 10.15152/QDB.153
4.5. Acute photoirritation 1 0.70 1 100.00 53 53 53 10.15152/QDB.139
4.6. Skin sensitization 28 19.72 7 25.00 6 405 139 10.15152/QDB.112

10.15152/QDB.125
4.7. Respiratory sensitization 4 2.82 1 25.00 10 319 194 10.15152/QDB.143
4.8. Photosensitization 0 — — — — — — —
4.9. Eye irritation 15 10.56 4 (1) 33.33 16 2,928 52 10.15152/QDB.133
4.10. Mutagenicity 14 9.86 6 42.86 11 6,728 159 —
4.11. Photomutagenicity — — — — — — — —
4.12. Carcinogenicity 40 28.18 8 (1) 22.50 11 3,017 106 10.15152/QDB.142
4.13. Photocarcinogenicity 0 — — — — — — —
4.14. Repeated dose toxicity 6 4.23 1 16.67 4 549 233 —
4.15. In vitro reproductive toxicity 1 0.70 0 0.00 38 38 38 —
4.16. In vivo prenatal developmental toxicity 3 2.11 2 66.67 9 39 10 —
4.17. In vivo pre-, peri-, postnatal

development and/or fertility
1 0.70 0 0.00 11 11 11 —

4.18. Endocrine activity 7 4.93 1 14.29 19 151 28 10.15152/QDB.124
4.19. Neurotoxicity 6 4.23 1 16.67 7 58 32 10.15152/QDB.154

Total 142 100.00 40 (3) 30.28 — — — —
Note: Explanation of columns: QMRF ID, quantitative and qualitative structure–activity relationship (QSAR) model reporting format identification number; No. with model, number of
articles with human health endpoints containing model(s); %, percent of 142 articles; No. that are potentially reproducible, see explanation in the first paragraph of the “Methods” section.
The number in parenthesis indicates the number of partially reproducible articles. For ratio (%) these numbers are summed; ratio (%), percent of potentially reproducible articles among the
articles with models for a specific endpoint; QDB DOI, digital object identifier in the QSAR Database repository (QSARDB Repository; Ruusmann et al. 2015) for the reproduced article(s).
Em dash indicates table cells of endpoints where articles with models were not found or information that can not be provided.
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Figure 6. Consolidated view of the analysis results for the human health (HH) endpoints. Circle: annual distribution of articles (left-hand side), ranges of data-
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datasets was 103, indicating that most of the modeling utilized
small data collections. This can be clearly seen in Figure 7 (cen-
ter of the plot), where the dataset size was <100 compounds in
50% of the cases and between 101 and 500 compounds in 41% of
the cases. Datasets with higher numbers of compounds were an
exception. Datasets with 501 to 1,000 compounds were found in
eight articles; between 1,001 and 5,000 compounds were used in
three articles, and >5,000 compounds were used only once. The
size of the datasets has clearly increased over the past decade.

Discussion
Depending on the availability and transparency of the data and
model information, QSAR articles can be divided into three
groups: not reproducible, potentially reproducible, and a mixture
of the two cases. The first group, articles with models that cannot
be reproduced, was the easiest to detect because those articles
lacked some critical data. Reproducibility can fail due to incom-
plete or even completely missing representation of the chemicals
in the dataset (e.g., identifiers of chemical structure, descriptors,
and/or experimental and calculated endpoint data). For example,
without descriptor values, it is impossible to confirm the reprodu-
cibility of the descriptor calculation procedure, the correctness
of the model representation, or the predicted endpoint values.
Finally, a model without a complete mathematical representation
cannot be used, making it impossible to confirm the reproducibil-
ity of the predicted values and the model’s statistical parameters.
Unfortunately, such articles are in the majority, and the “Results”
section vividly shows this. It can be argued that some models
with missing information might be reproducible with hard work
by following the protocol described in the scientific article. This
effort may include collecting data from the original sources and
recalculating everything from the possible conformational search
of the chemical structures to the generation of the QSAR model
using the original software (and version) used by the authors of
the article. This approach might work with acceptable accuracy
for simple models (e.g., MLR models for small datasets), but it is
very unlikely to be successful for large datasets or for models
that use stochastic methods.

The second group includes potentially reproducible articles.
This is the most useful outcome of a scientific article and should
be the norm. Such articles report all technical and numerical data
corresponding to each step of the model’s derivation and are
ready for independent verification. Finally, if everything is cor-
rect, these reported models are beneficial to the users. In such a
case, the user can reproduce the model, use the same version of

the software or an alternative software package as a descriptor
calculator, or create a workflow and execute the model for new
compounds that need prediction. The results of this work show
proportionally how many of such studies are reported in the sci-
entific literature and how well the articles document them.

The third group includes articles that represent a mixture of
the first and second cases. Such articles usually compare different
modeling methods and contain multiple models for which the
representation of one or more models has technical completeness
(e.g., MLR), but the remaining models may have incomplete or
missing mathematical representations. Most often, in these cases,
the authors have probably not been able to find a good way to
present or document models that exploit more complex machine-
learning algorithms. Perhaps there are limitations to the presenta-
tion of mathematical or chemical data in journals or limitations
may be imposed by the authors’ lack of expertise or sometimes
by a lack of full reporting documentation on the software
employed by the authors (the black box problem).

Observations across the Endpoints
The systematic analysis of 1,533 published scientific articles
involving QSAR models covering various physical and chemical
properties, ecotoxicity, environmental fate, human health, and
toxicokinetics endpoints brings forward a worrying trend—over-
all, 57.5% of QSAR articles lacked some details about the dataset
or the model representation that would make the independent ver-
ification and reproduction of these models impossible or very dif-
ficult. Thus, only 42.5% of the articles presented potentially
reproducible models. One should keep in mind that this is an op-
timistic estimate because it assumes that all of these models can
actually be reproduced. Our experience in rebuilding previously
published QSARs shows that for several unforeseen reasons, this
is unlikely to be true and that the percentage of reproducible
models is actually even lower (see discussion below).

Estimating the exact number of articles with QSAR models
for each endpoint was not the main goal of the literature search
methodology used in this work. The set of keywords chosen for
the literature search influenced the results. Sometimes, even the
use of the most clearly understood keywords does not ensure that
all existing articles will be identified because search engines have
limitations. A good example is our recently published article on a
QSAR for bioconcentration factor (Piir et al. 2014); that article
did not appear in the search results because the term “QS*R” was
neither present in the abstract nor specified as a keyword. For
that reason, that article and probably several other articles were

Table 5. Summary of the literature search for toxicokinetics endpoints.

Endpoint Articles Dataset size Example(s)

QMRF ID Name
No. with
models %

No. that are
potentially reproducible Ratio (%) Min Max Median QDB DOI

5.1. Skin penetration 35 25.36 9 (2) 31.43 5 454 111 —
5.2. Ocular membrane penetration 4 2.90 3 75.00 9 69 47 10.15152/QDB.191
5.3. Gastrointestinal absorption 53 38.41 17 (2) 35.85 17 1,301 100 10.15152/QDB.166
5.4. Blood–brain barrier penetration 28 20.29 5 (1) 21.43 18 484 143 10.15152/QDB.199
5.5. Placental barrier penetration 2 1.45 0 0 88 88 88 —
5.6. Blood–testis barrier penetration 0 — — — — — — —
5.7. Blood–lung barrier penetration 0 — — — — — — —
5.8. Metabolism 0 — — — — — — —
5.9. Protein binding 16 11.59 4 (1) 31.25 10 20,795 144 —
5.10. DNA-binding 0 — — — — — — —

Total 138 100.00 38 (6) 31.88 — — — —
Note: Explanation of columns: QMRF ID, quantitative and qualitative structure–activity relationship (QSAR) model reporting format identification number; No. with model, number of
articles with toxicokinetics endpoints containing model(s); %, percent of 138 articles; No. that are potentially reproducible, see explanation in the first paragraph of the “Methods” section.
The number in parenthesis indicates the number of partially reproducible articles. For ratio (%) these numbers are summed; ratio (%), percent of potentially reproducible articles among the
articles with models for a specific endpoint; QDB DOI, digital object identifier in the QSAR Database repository (QSARDB Repository; Ruusmann et al. 2015) for the reproduced article(s).
Em dash indicates table cells of endpoints where articles with models were not found or information that can not be provided.
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Figure 7. Consolidated view of the analysis results for the toxicokinetics (TK) endpoints. Circle: annual distribution of articles (left-hand side), ranges of data-
set sizes (in the middle), ratios of potential reproducibility, main modeling algorithms, and relationships between them (right-hand side). Bar plot: annual distri-
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not included in the analysis. Hence, the visibility and discover-
ability of published QSARs in search engines is also deter-
mined by the pertinence and consistency of words used in the
keywords, titles, and abstracts of these articles. A systematic
review might have also included more alternative keywords in
the search (e.g., “structure–activity relationship” or “relation-
ship,” etc.) to make it possible to find all relevant articles in the
literature, but this is not the scope of this manuscript. In the
present work, we wanted to design a minimal set of keywords
to reduce false hits and ensure that the literature search could
be easily repeated and verified. Nevertheless, the number of
reviewed and analyzed articles (1,533 of the 6,254 search hits)
was feasible for a statistical analysis and allowed us to deter-
mine how well QSAR models are documented in scientific
articles, as well as the proportion of QSARs that can be poten-
tially reproduced and reused.

Here, a minority of endpoints in each endpoint category
received the most attention. This was obviously influenced by the
availability and quality of experimental data. Analysis of the
dataset sizes showed that data availability is a general issue, par-
ticularly for the human health endpoints. The small number of
papers per year in the human health endpoint group is most likely
related to the lack of available data. This stands in contrast to the
strong interest in models of human health endpoints given their
relevance to toxicity in humans. The paucity of data may be
related to the ethical implications of the use of higher living
organisms, such as rats and dogs, as well as to the high cost of
complex tests and the regulations regarding such tests. Another
possible reason for the paucity of publicly available data is the
push toward the commercialization of toxicity-related models.

In this analysis, MLR models predominated (Figure 8) and
also had the highest potential for reproducibility compared to
other mathematical representations. This does not mean that the
situation concerning MLR models is satisfactory; in fact, only
51% were presented in a technically complete manner. For all
other model types, the potential for reproducibility was found in
only 10% of the published articles. This does not support our ear-
lier hypothesis that complex models are not, as a rule, reusable
on the basis of the information presented in the article
(Ruusmann et al. 2014). In fact, we identified several articles
with more complex model types (ANNs, SVM-s, k-NNs, DTs,
RFs, etc.) that included complete mathematical representations,
but they were in the minority.

The present work suggests several reasons why many models
cannot be independently verified. For example, in the case of
MLR models, the mathematical representation was usually given
correctly, yet problems can be caused by missing descriptor and/
or property values. In the case of more complex models, the
mathematical representation was often missing, as were the
descriptor values. Indeed, the representation of complex models
can be complicated, but there are solutions that can make it easy
to represent models transparently and make them usable. To en-
courage the publication of easily accessible models, examples of
MLRs as well as of more complex models for the majority (54 of
79) of the analyzed endpoints have been reproduced from scien-
tific articles and are accessible through the QSAR DataBank
Repository (Ruusmann et al. 2015; QSARDB Repository); this
information is archived in the QSAR DataBank file format
(Ruusmann et al. 2014). See the respective DOIs of the QDB ar-
chives in Tables 1–5.

Large data tables take up space; therefore, many authors have
made compromiseswhen providing them in articles, often omitting
descriptor values. As a consequence, more complete technical data
are available for QSARs that contain smaller numbers of com-
pounds and fewer descriptors. This is an understandable outcome,

given that it is easy for authors to provide full data for such models
in the article. The situation has improved during the last decade
with the increased availability of online supplementary informa-
tion, allowing complete data tables for large datasets to be pub-
lished. The results of this study suggest that, unfortunately, even in
a time with increasing acceptance and use of supplementary mate-
rial to report data, there is still a lack of reproducibility among
QSAR models due to incomplete documentation. While supple-
mentary information is highly useful, it has a number of technical
limitations, depending on the journal. For example, some publishers
accept only a limited set of file formats, impose file size restrictions,
and so on. To address the above issues, open data repositories are a
good alternative for long-term preservation of primary chemistry
research data (Downing et al. 2008). In recent years, the open reposi-
tory movement has created new tools for making data and models
available in domain-specific, content-aware smart repository solu-
tions designed for storingQSARmodels (Ruusmann et al. 2015).

Even if the data appear to be well presented, independent
evaluation may uncover a nonobvious inconsistency in the data
that will make a model unusable. The following warning
applies mostly to authors, but reviewers in the peer-review pro-
cess may benefit as well. Several of our attempts to reproduce
models from articles have failed due to inconsistent data and/
or incorrect mathematical representations. Similar deficiencies
have also been noted by Dearden et al. (2009). Those mis-
matches were probably caused by copy-and-paste errors.
Therefore, authors must cross-check their tables. Detecting
such errors is quite easy in the case of MLR models. It only
requires recalculation of the predicted values and checking
whether they match the provided values. Further, omitting in-
formation about data preprocessing (normalization, etc.) from
articles makes it difficult to properly recreate the proposed
model.

In 2006, the Journal of Chemical Information and Modeling,
together with the Journal of Medicinal Chemistry, revised their
publication policy for QSAR manuscripts. Along with several pol-
icy changes intended to improve the quality of QSAR papers, the
editors have stated the following fundamental requirement for
manuscripts (Jorgensen 2006; Editorial 2006): “All data and mo-
lecular structures used to carry out a QSAR/QSPR study are to be
reported in the paper and/or in its Supporting Information, or be
readily available, without infringements or restrictions. The use of
proprietary data is generally not acceptable because it is inconsis-
tent with the ACS Ethical Guidelines for publications: ‘A primary
research report should contain sufficient detail and reference to
public sources of information to permit the author’s peers to repeat
the work.’ This is fundamental, though possible exceptions can be
discussed with the editor in the unusual circumstance that a con-
vincing case could be made that the data are somehow a secondary
issue.” In fact, similar principles for the reproducibility of results
are universally required by most journals. Unfortunately, the
results of this study demonstrate that this fundamental requirement
is often still overlooked or has not been sufficient.

QSARmodeling approach has been accepted for a long time in
industry, e.g., for drug design. It can be expected that in the future,
the use of QSARs by regulators to estimate the ecological and
human health effects of chemical substances will increase. For
example, the REACH (EPCEU 2006) and Cosmetics (EPCEU
2009) regulations imposed by the European Union promote the use
of in silicomethods to reduce animal testing. The general driver in
the use of QSARs is, however, chemical safety, which is the main
reason for the attrition of chemicals from the market. The accep-
tance and use of QSARs by regulators and various industries will
require thorough validation and assessment of models (OECD
2007). This cannot be achieved without transparent and accurate
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modeling and model reporting practices. In the case of decision-
making, transparency enables reasoning on why the prediction is
applicable to a test compound, and independent validation gives
practical value to themodel. Thismakes the best practices ofmodel
reporting (see next section) a basic requirement when publishing
scientific work involving QSAR models. The criteria used in the
present review for the assessment of scientific articles for potential
reproducibility correlate very well with OECD guidance on the

validation of QSAR models (OECD 2007). Directly speaking, if a
research article is reproducible and includes a proper mechanistic
interpretation of the published model(s), it will very likely meet all
of the OECD QSAR validation principles. This is true for several
reasons, with the main being that the model can be independently
verified, including all calculation procedures and the applicability
domain. Based on the present review, one can say that up to 42.5%
of published QSAR models potentially comply with the OECD
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QSAR validation principle. However, this is an overly optimistic
estimate because each individual case would require time-
consuming independent verification, and verification is not likely
to succeed for everymodel.

Fortunately, some QSAR models have found their way into
practical application in commercial or public software solutions,
where all molecular structure and data transformations used in the
model development workflows are also realized in the prediction
functionality of these programs (Nicolotti et al. 2014; Ambure et al.
2014; Tetko et al. 2017). In principle, this should guarantee the
reproducibility of these models and make them easily usable. An
obvious drawback is that development, maintenance, and support
of the software are not trivial, and each of these activities involves
costs that are not simple to sustain for a large number of models.
As a result, the majority of QSAR models are not available as
ready-to-use software, while at the same time, they have value that
can be realized in the hands of an expert user. To make published
QSAR models more easily accessible than they have so far been,
better documentation of these models is the key.

Best Practices for QSARModel Reporting
The current analysis clearly indicates substantial deficiencies in the
documenting of QSAR studies in scientific articles. The incidence
of technical completeness of reporting and the reproducibility of
derived models is less than half in all cases (Figure 8, right-hand
side). This suggests that in addition to best practices on how to de-
velop the models (see “Introduction” section for relevant referen-
ces), best practices on how to report themodels are needed.

Therefore, based on our prior experience in this field, the
results of the literature analysis, and experience gained by repro-
ducing models from the scientific literature (examples are pro-
vided in Tables 1–5), a checklist for assessing the potential
reproducibility of published models was compiled (Figure 9).
This checklist does not aim to capture every possible detail
related to the description of the model. Instead, it captures the
minimal requirements needed to make the model reproduction
process possible and the model potentially usable by a wider

interested audience. The checklist can also be used by interested
parties, such as journal editors, reviewers, regulators, evaluators,
and potential users, to assess the reproducibility of articles with
models. It is focused on raw data, data provenance, and model
representation. By following this simple list, it is easy to improve
the transparency of published QSAR research, allowing broader
applicability of the research results and fulfilling the basic
requirements of reproducibility. The checklist is divided into four
parts according to the major subjects that are typical of a QSAR
development workflow (Sild et al. 2006; Maran et al. 2007;
Tropsha 2010). All parts of the checklist are equally important,
and a deficiency in any of them will significantly compromise the
reproducibility (i.e., independent verification) and, as a conse-
quence, will compromise the use of the models.

The first part of the checklist (Figure 9) covers the characteri-
zation of chemicals and their molecular structures used in model
development. This is a two-sided problem because it involves
identification and characterization of the chemicals. Correct iden-
tification enables the mapping of chemical structures to experi-
mental measurements and requires that chemical names (ideally,
supplier provided), Chemical Abstract Service (CAS) registry
numbers, International Chemical Identifier (InChI) codes, or
other identifiers are correct and consistent with each other (see
discussion in Ruusmann and Maran 2013). The proper characteri-
zation of chemicals can be a major concern for reproducibility
because it is not always obvious how to determine the molecular
structure of a compound from its chemical identity. Results can
vary since different laboratories utilize different protocols to pro-
cess chemical structural data. Discrepancies in the results may
arise from different ways of handling salts, mixtures, tautomers,
and stereoisomers, generating 3-D coordinates with stochastic
algorithms, and so on. Therefore, it is strongly recommended to
make all manipulations conducted during the structure pretreat-
ment explicitly available, together with chemical structures in the
file format used during modeling.

The second part covers the representation of experimental
data. From the point of view of reproducibility, the most impor-
tant question is whether or not the experimental values are pre-
sented. However, the requirement does not end there; it is also
important to define the measured property (or endpoint) and iden-
tify the original data sources. Information on whether the data are
native or synthetic (see discussion in Ruusmann and Maran
2013) must be presented, and in the latter case, all manipulations
must be described. When publishing experimental data, it is ad-
visable to avoid PDF files and give preference to machine-
readable file formats (e.g., text files such as comma/tab–separated
values and spreadsheets).

The third part covers the descriptors that are used in the
model. The availability of descriptor values is critical to verifying
the descriptor calculation procedure. In addition, the identifiers
and names of the descriptors in the article must be consistent
with the software that was used. It is extremely important to iden-
tify the version of the software that was used because the descrip-
tor values may change due to bug fixes and improvements to the
underlying algorithms. Similarly to the data on experimental
properties, it is important to consider the choice of file formats to
be used in publishing the descriptor values.

The fourth part covers the representation of the QSAR models
and the procedure used for model development. The mathemati-
cal representation of the model is essential for performing predic-
tions. However, the current literature analysis shows that this
requirement is usually only satisfied for MLR models because
they can easily be added to the article text as mathematical equa-
tions. The description of the model development process must
contain the name and version of the modeling software, together

Chemicals
Do the chemicals have names and identifiers (e.g. CAS, InChI)?

Are the chemical structures provided?

Are 3D coordinates present, when the model depends on the 
conformation of chemicals?

Properties
Are the experimental activity/property values provided?

Is the endpoint properly defined (e.g. species, units)?

Are the references to original data sources provided?

Descriptors
Are the calculated descriptor values provided?

Is it possible to identify all descriptors by their name or abbreviation?

Is the descriptor calculation workflow adequately described?

Is the descriptor calculation software name and version provided?

Models
Is the mathematical representation of the model present?

Are the predicted values present for training and validation sets?

Is the modelling software name and version provided?

Figure 9. Checklist for the articles of quantitative and qualitative structure–
activity relationships (QSAR) models.
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with the parameter values specific to the modeling technique
used to build the model. In addition, the availability of the pre-
dicted property values is important because they enable the verifi-
cation of each prediction when model reproduction is attempted.

When carefully documented, all of the above described infor-
mation can be provided in the scientific article. For smaller data
series and simpler mathematical representations (like MLR), this
is easily doable. In the case of larger datasets and more complex
mathematical models (such as machine-learning algorithms),
including all relevant information in the article will become more
complicated, and with it, data presentation becomes a challenge.
Presentation of full data in the article text may not be very practi-
cal, but the presentation of such data is easily achievable when
the data are provided in the supplementary material in a format
that is specifically designed to represent the models. A recent
book chapter provides an overview of data formats that have
been developed for organizing QSAR models and related infor-
mation (Sild et al. in press). The QsarDB data format fulfills all of
the above requirements for the representation of QSAR models
and datasets and is probably the most complete data format devel-
oped to date for QSAR models (Ruusmann et al. 2014; QSARDB
Repository, see Best Practises menu item under the Resources).
Most importantly, the format is machine readable and enables in-
dependent evaluation and use of the models to make predictions
when descriptor values are provided, even in the case of machine-
learning methods that are not easily applicable to prediction based
on the description of the model in a scientific article. The QsarDB
data format is a collection of systematically organized text files in
well-known file formats for representing chemical structures, tabu-
lar data, literature references, and so on, including the model itself
in an executable format. The QsarDB data format is supported by
a graphical user editor and tools that can be used to organize all
pertinent information into catalogs and, finally, into a zip archive.

Conclusions
This review highlights critical issues in the scientific literature
regarding QSAR parameters and models. The results demonstrate
that the fundamental requirements established by many leading
scientific journals ∼ 10 y ago for reproducible documentation of
QSAR papers are often still being overlooked or have not been
sufficient. Hopefully, the results of this investigation and our rec-
ommendations regarding best practices for model reporting will
improve the reproducibility and usefulness of future QSAR stud-
ies for interested parties (journal editors, reviewers, regulators,
evaluators, and potential users).
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